You are here

New Tool to Forecast Marine Response to Changes in the Kimberley

28 March 2018

The Ecosim and ALCES model domains

An international team of researchers has developed and tested a conservation tool for the Kimberley region, in Australia’s far northwest, that can predict how marine species may fair under different climate and development scenarios.

A range of scenarios was modelled by scientists from CSIRO and Canadian-based ALCES under different management strategies to provide some insight into the potential pattern of responses by marine species over a 35 year period until 2050.

Changes in levels of conservation effort where compared against the three biggest environmental pressures of warming, rainfall and development.    

The researchers found that the dynamic Kimberley system, which is driven mostly by seagrass and algae (70%), reacted independently to many of the environmental pressures put on it.

 

Summary of result of scenario analysis

 

While variations in population growth made little difference to the overall outcome, groups and elements within the marine environment were found to respond differently to climate and development pressures, some showing dramatic variation between scenarios, and others showing very little.

WAMSI project leader, CSIRO’s Dr Fabio Boschetti, recently presented his team’s findings to Department of Biodiversity, Conservation and Attractions researchers and managers in Perth. He  explained that the use of modelling tools was not an ‘absolute’ prediction but attempts to say something about how the system may respond to different management decisions based on our current understanding.

“We analysed different conservation strategies ranging from doing nothing at all, to medium and high conservation efforts,” Dr Boschetti said. “Current conservation efforts are running at about medium.”

“What we did find interesting was that such a dynamic system was so independent of the forces,” Dr Boschetti said. “When we included a conservative 2.5 per cent population growth rate per year, which is quite high, we were still surprised to see it made such a small imprint on the system as a whole. It would be interesting to model spikes in evolution, such as unusual warming or rain events.”

Dr Hector Lozano-Montes (CSIRO) collated information from the results of 25 projects under the Western Australian Marine Science Institution’s (WAMSI) Kimberley Marine Research Program in order to describe the ‘system’ and develop an interactive dynamic food web based on how much marine biomass there is and where it is.  This work has resulted in the development of a more detailed picture of the complete interactions that occur in the Kimberley marine system.

The Ecopath system

 

Links:

Knowledge Integration and Management Strategy Evaluation Modelling_WAMSI KMRP project 2.2.8 Report_Boschetti et al 2017_Final

WAMSI Project Page: www.wamsi.org.au/modelling-future-kimberley-region

 

The $30 million Kimberley Marine Research Program is funded through major investment supported by $12 million from the Western Australian government co-invested by the WAMSI partners and supported by the Traditional Owners of the Kimberley.

 

Category: 
Kimberley Marine Research Program