Isolation of oceanic and coastal populations of the harvested mother-of-pearl shell *Tectus niloticus* in the Kimberley

Oliver Berry1,5, Zoe Richards2,3,5, Glenn Moore2,5, Udhi Hernawan4,5

1CSIRO, Crawley, Western Australia

2Western Australian Museum, Perth, Western Australia

3Curtin University, Bentley, Western Australia

4Edith Cowan University, Joondalup, Western Australia

5Western Australian Marine Science Institution, Perth, Western Australia
WAMSI Kimberley Marine Research Program

Initiated with the support of the State Government as part of the Kimberley Science and Conservation Strategy, the Kimberley Marine Research Program is co-invested by the WAMSI partners to provide regional understanding and baseline knowledge about the Kimberley marine environment. The program has been created in response to the extraordinary, unspoilt wilderness value of the Kimberley and increasing pressure for development in this region. The purpose is to provide science based information to support decision making in relation to the Kimberley marine park network, other conservation activities and future development proposals.

Ownership of Intellectual property rights

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Western Australian Marine Science Institution, CSIRO, Australian Institute of Marine Science, Edith Cowan University, The University of Western Australia, Western Australia Department of Primary Industries and Regional Development, Western Australian Museum, Curtin University, and the Western Australian Department of Biodiversity, Conservation and Attractions.

Copyright

© Western Australian Marine Science Institution

All rights reserved.

Unless otherwise noted, all material in this publication is provided under a Creative Commons Attribution 3.0 Australia License. (http://creativecommons.org/licenses/by/3.0/au/deed.en)

Legal Notice

The Western Australian Marine Science Institution advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. This information should therefore not solely be relied on when making commercial or other decision. WAMSI and its partner organisations take no responsibility for the outcome of decisions based on information contained in this, or related, publications.

Front cover images (L-R)

Image 1: Satellite image of the Kimberley coastline (Image: Landgate)

Image 2: Small biopsy samples were taken non-lethally from the foot of trochus (Tectus niloticus) during fieldwork in the Kimberley and on offshore atolls. (Image: Zoe Richards, Curtin University)

Image 3: Humpback whale breaching (Image: Pam Osborn)

Image 4: Trochus (Tectus niloticus) is a harvested mollusc that is abundant on some intertidal reefs in the Kimberley, and throughout the Indo-Pacific. (Image: Zoe Richards, Curtin University)
Year of publication: August 2017

Author Contributions: All authors contributed to the drafting of this text.

Corresponding author and Institution: Oliver Berry, CSIRO Oceans and Atmosphere. oliver.berry@csiro.au

Funding Sources: This project was funded (commissioned) by the Western Australian Marine Science Institution as part of the WAMSI Kimberley Marine Research Program, a $30M program with seed funding of $12M provided by State government as part of the Kimberley Science and Conservation Strategy. The Program has been made possible through co-investment from the WAMSI Joint Venture partners and further enabled by data and information provided by Woodside Energy Ltd.

Competing Interests: The commercial investors and data providers had no role in the data analysis, data interpretation, the decision to publish or in the preparation of the manuscript. The authors have declared that no competing interests exists.

Kimberley Traditional Owner agreement: This research was enabled by the Traditional Owners through their advice, participation and consent to access their traditional lands.

Acknowledgements: We are grateful to all WAMSI staff for their assistance, and in particular Kelly Waples, Stuart Field and Kim Friedman for providing advice and constructive criticism throughout the project. Many other people and organisations contributed to the success of this project, and we thank them sincerely. We especially thank the following Indigenous communities. The Bardi and Jawi Niimidiman Aboriginal Corporation, the Bardi Jawi Rangers and the Bardi Jawi Traditional Owners and specifically Daniel Oades, Damon Pyke, Azton Howard, Chris Sampi, Kevin George, Kevin Ejai, Kevin Dougal, Tasha Stumpagee, Phillip McCarthy, Peter Hunter, Zac Ejai, Paul Davey and Trevor Sampi. The Mayala people, specifically Sandy, Alec and Janelia Isaacs. The Wunambal Gaambera Aboriginal Corporation, Traditional Owners, Uunguu Rangers and Tom Vigilante. The Dambimangari Aboriginal Corporation, Dambimangari Traditional Owners and the Dambimangari Rangers. Thanks also to the Bioinformatic pipeline development: Bernd Gruber (University of Canberra); Oceanographic modelling: Ming Feng, Dirk Slawinski (CSIRO); SNP marker development and genotyping: Andrzej Kilian (Diversity Arrays Technology); Field assistance: Sam Moyle and Fiona Webster; Kimberley Marine Research Station for facilities and logistical support: James Brown, Michael Flynn, Scott Whitlam, Duncan Smith and Erin McGinty; and advice on project development: Karen Miller (AIMS).

Collection permits/ethics approval: SF008440, SF009910, SC001362 (Western Australian Department of Parks and Wildlife); 2485 2085, 2344 (Western Australian Department of Fisheries)
Executive Summary

This report focuses on “trochus” or “mother of pearl shell” *Tectus niloticus*, which is a large harvested gastropod mollusc common on intertidal reefs in the Kimberley and the wider Indo-Pacific. This species was selected as a model for a study of connectivity in molluscs because it has a short larval life-history (3-5 days), which is typical of species whose recruitment is primarily local and they are prone to over-harvest. Over-harvest of *T. niloticus* has been documented throughout its range, and it’s been argued that placement of reserves adjacent to harvested regions would be an effective way to sustain the species. However, the unique complexity and power of the Kimberley hydrodynamic environment potentially enlarges the scale of recruitment and/or creates spatially complex dynamics that may be relevant to harvest management in the region.

T. niloticus is also unusual because it is present on both coastal Kimberley reefs and oceanic atolls at the edge of the Australian continental shelf margin. Oceanic and coastal reefs have profoundly different faunal diversity, and biogeographers have speculated on whether this can be attributed to their pronounced environmental differences or to hydrodynamic isolation. However, the scarcity of species common to both environments has meant that this hypotheses remains untested. Oceanic populations are also harvested by Indonesian artisanal fishers, and there is a need to understand how oceanic reefs depend on recruitment and genetic variation from reefs elsewhere.

Samples from 514 *T. niloticus* individuals were collected from 16 “coastal” sites in the Dampier Peninsular and Buccaneer Archipelago as well as the “oceanic” sites the Rowley Shoals and Scott Reef. We employed a genotype-by-sequencing approach to characterise genetic diversity within and between these sampling sites. Custom bioinformatics pipelines were developed to analyse this large dataset. After quality control filtering, 5,428 single nucleotide polymorphisms (SNPS) were available for analysis.

Insights into broad-scale genetic structure between coastal and oceanic sites

Significant genetic sub-division was evident between the oceanic sites (the Rowley Shoals and Scott Reef) and the coastal sites (distances c. 500 and 300 km respectively). Significant genetic sub-division was also evident between the two oceanic sites (distance c. 400km), but it was approximately 25% of the magnitude of the oceanic – coastal sites comparison. Evidence for significant adaptive genetic differences between the coastal and oceanic sites was indicated by the presence of a sub-set of highly divergent “outlier” genetic loci.

This means that oceanic *T. niloticus* populations are genetically and demographically independent from coastal populations and from each other. The closer affinity of oceanic populations to each other than to coastal populations reflects irregular connectivity on evolutionary timescales under the influence of the Indonesian Flow-Through and derivative currents. Different environmental conditions on oceanic and coastal reefs are also driving adaptive divergence between *T. niloticus* populations.

Insights into fine-scale genetic structure within the coastal Kimberley

Negligible genetic sub-division was evident among the Dampier Peninsular-Buccaneer Archipelago coastal sites (distances ≤ 75km), and what sub-division was recorded could not be attributed to geographic distance nor modelled oceanographic connectivity.

T. niloticus inhabiting reefs on the Dampier Peninsular and Buccaneer Archipelago form a single highly-mixed genetic unit, and are highly demographically inter-dependent. This is likely due to their high and continuous reproductive output in combination with the extreme hydrodynamic mixing experienced in the region.
Implications for management at a broad-scale

Management of *T. niloticus* at the Rowley Shoals, Scott Reef, and other oceanic shoals should treat each as being effectively isolated on the ecological timeframes relevant to harvest management. Recruitment from outside will not replenish over-harvested stocks even within tens of years. Occasional recruits will be drawn from other offshore shoals, and possibly Indonesia, and will contribute genetic diversity rather than offsetting over-harvest. Potential supplementation of populations should recognise that coastal *T. niloticus* populations may be mal-adapted to oceanic conditions.

Implications for management at a fine-scale

Management of *T. niloticus* on the Dampier Peninsular and Buccaneer Archipelago should treat the region as being effectively a single stock on the ecological timeframes relevant to harvest management. Over-harvested sites within this region will be replenished with recruits from neighbouring sites within years, assuming they exist, and allowing for the slow growth of the species.

Residual knowledge gaps

This investigation had a limited spatial scope in comparison to the broad Indo-Pacific range of *T. niloticus*, capturing the south-westernmost part of its range. Indeed, even within the Kimberley region, the region of high density in the Buccaneer Archipelago is disjunct from other high density populations in Australia, Indonesia and on offshore atolls. The broad distribution of *T. niloticus* in the tropical Indo-Pacific incorporating a diversity of reef types and hydrodynamic conditions means that it is unlikely that the spatial scale of genetic structure will be reflected throughout its range. Considering the economic and cultural significance of the species to many people, a broader investigation of population structure in *T. niloticus* and its biophysical drivers deserves consideration.

Please Note:
The details of this report are currently subject to a journal publication process. For more information contact the author: Dr Oliver Berry, CSIRO Oceans and Atmosphere. oliver.berry@csiro.au.